هوش مصنوعی چیست و کاربردهای آن

هوش مصنوعی چیست؟
هوش مصنوعی (AI) شاخه وسیعی از علوم کامپیوتر است که به ساخت ماشینهای هوشمندی میپردازد که قادر به انجام وظایفی هستند که معمولاً به هوش انسانی نیاز دارند.
چهار نوع هوش مصنوعی کدامند؟
ماشین های واکنشی
حافظه محدود
نظریه ذهن
خودآگاهی
نمونه هایی از هوش مصنوعی چیست؟
سیری، الکسا و دستیاران هوشمند دیگر
ماشین های خودران
مشاوران روبو
ربات های مکالمه ای
فیلترهای اسپم ایمیل
توصیه های نتفلیکس
هوش مصنوعی چگونه کار می کند؟
رویکردها و مفاهیم هوش مصنوعی
کمتر از یک دهه پس از شکستن ماشین رمزگذاری نازی ها انیگما و کمک به نیروهای متفقین در پیروزی در جنگ جهانی دوم، ریاضیدان آلن تورینگ با یک سوال ساده تاریخ را برای بار دوم تغییر داد: “آیا ماشین ها می توانند فکر کنند؟”
مقاله تورینگ “ماشین آلات محاسباتی و هوش” (1950) و آزمون تورینگ متعاقب آن، هدف و چشم انداز اساسی هوش مصنوعی را ایجاد کرد.
در هسته خود، هوش مصنوعی شاخه ای از علوم کامپیوتر است که هدف آن پاسخ مثبت به سوال تورینگ است. این تلاش برای تکرار یا شبیه سازی هوش انسانی در ماشین ها است.
هدف گسترده هوش مصنوعی سوالات و بحث های زیادی را به وجود آورده است. به حدی که هیچ تعریف واحدی از این رشته به طور کلی پذیرفته نشده است.
آیا ماشین ها می توانند فکر کنند؟ – آلن تورینگ، 1950
محدودیت اصلی در تعریف هوش مصنوعی بهعنوان «ساخت ماشینهای هوشمند» این است که واقعاً توضیح نمیدهد که هوش مصنوعی چیست؟ چه چیزی یک ماشین را هوشمند می کند؟ هوش مصنوعی یک علم میان رشتهای با رویکردهای متعدد است، اما پیشرفتها در یادگیری ماشینی و یادگیری عمیق تقریباً در هر بخش از صنعت فناوری یک تغییر پارادایم ایجاد میکند.
نویسندگان استوارت راسل و پیتر نورویگ در کتاب درسی پیشگامانه خود هوش مصنوعی: رویکردی مدرن، با یکپارچهسازی کار خود پیرامون موضوع عوامل هوشمند در ماشینها، به این سؤال میپردازند. با در نظر گرفتن این موضوع، هوش مصنوعی «مطالعه عواملی است که ادراکاتی را از محیط دریافت میکنند و اعمالی را انجام میدهند».
نورویگ و راسل در ادامه به بررسی چهار رویکرد مختلف میپردازند که از لحاظ تاریخی حوزه هوش مصنوعی را تعریف کردهاند:
انسان اندیشی
عقلانی فکر کردن
انسانی عمل کردن
منطقی عمل کردن
چهار نوع هوش مصنوعی
ماشین های واکنشی
یک ماشین واکنشگرا از ابتداییترین اصول هوش مصنوعی پیروی میکند و همانطور که از نامش پیداست، فقط قادر است از هوش خود برای درک و واکنش به دنیای مقابل خود استفاده کند. یک ماشین واکنشی نمی تواند یک حافظه را ذخیره کند و در نتیجه نمی تواند به تجربیات گذشته برای اطلاع رسانی تصمیم گیری در زمان واقعی تکیه کند.
درک جهان به طور مستقیم به این معنی است که ماشینهای راکتیو فقط برای انجام تعداد محدودی از وظایف تخصصی طراحی شدهاند. با این حال، محدود کردن عمدی جهان بینی یک ماشین واکنشی، هیچ نوع معیاری برای کاهش هزینه نیست، و در عوض به این معنی است که این نوع هوش مصنوعی قابل اعتمادتر و قابل اعتمادتر خواهد بود – هر بار به همان روشی به محرک های مشابه واکنش نشان می دهد.
یک نمونه معروف از یک ماشین واکنشی Deep Blue است که توسط IBM در دهه 1990 به عنوان یک ابر رایانه شطرنجباز طراحی شد و استاد بزرگ بینالمللی گری کاسپاروف را در یک بازی شکست داد. دیپ بلو فقط میتوانست مهرههای روی صفحه شطرنج را شناسایی کند و بداند که هر کدام از آنها بر اساس قوانین شطرنج چگونه حرکت میکنند، موقعیت فعلی هر مهره را تصدیق کند و منطقیترین حرکت را در آن لحظه تعیین کند. کامپیوتر حرکات احتمالی آتی حریف خود را دنبال نمی کرد یا سعی نمی کرد مهره های خود را در موقعیت بهتری قرار دهد. هر چرخشی به عنوان واقعیت خود، جدا از هر حرکت دیگری که از قبل انجام شده بود، تلقی می شد.
نمونه دیگری از ماشین های واکنشی بازی، AlphaGo گوگل است. AlphaGo همچنین قادر به ارزیابی حرکتهای آینده نیست، اما برای ارزیابی پیشرفتهای بازی کنونی به شبکه عصبی خود متکی است و به آن برتری نسبت به Deep Blue در یک بازی پیچیدهتر میدهد. AlphaGo همچنین با شکست دادن قهرمان Go Lee Sedol در سال 2016 بر رقبای کلاس جهانی برتری داشت.
اگرچه از نظر دامنه محدود است و به راحتی تغییر نمی کند، هوش مصنوعی ماشین واکنشی می تواند به سطحی از پیچیدگی دست یابد و زمانی که برای انجام وظایف تکرارپذیر ایجاد شود، قابلیت اطمینان را ارائه می دهد.
حافظه محدود
هوش مصنوعی حافظه محدود این توانایی را دارد که دادهها و پیشبینیهای قبلی را هنگام جمعآوری اطلاعات و سنجیدن تصمیمات بالقوه ذخیره کند – اساساً به دنبال سرنخهایی در مورد آنچه ممکن است در آینده رخ دهد، به گذشته نگاه میکند. هوش مصنوعی حافظه محدود پیچیدهتر است و امکانات بیشتری را نسبت به ماشینهای واکنشپذیر ارائه میدهد.
هوش مصنوعی حافظه محدود زمانی ایجاد می شود که یک تیم به طور مداوم مدلی را در مورد نحوه تجزیه و تحلیل و استفاده از داده های جدید آموزش دهد یا یک محیط هوش مصنوعی ساخته شود تا مدل ها به طور خودکار آموزش داده و تجدید شوند. هنگام استفاده از هوش مصنوعی حافظه محدود در یادگیری ماشین، شش مرحله باید دنبال شود: داده های آموزشی باید ایجاد شود، مدل یادگیری ماشین باید ایجاد شود، مدل باید قادر به پیش بینی باشد، مدل باید قادر به دریافت بازخورد انسانی یا محیطی باشد. که بازخورد باید به عنوان داده ذخیره شود، و این مراحل باید به عنوان یک چرخه تکرار شوند.
سه مدل اصلی یادگیری ماشینی وجود دارد که از هوش مصنوعی حافظه محدود استفاده می کنند:
یادگیری تقویتی، که یاد می گیرد از طریق آزمون و خطای مکرر پیش بینی های بهتری انجام دهد.
حافظه کوتاه مدت بلند مدت (LSTM)، که از داده های گذشته برای کمک به پیش بینی مورد بعدی در یک دنباله استفاده می کند. LTSMها اطلاعات جدیدتر را هنگام پیشبینی و تخفیف دادههای گذشته در گذشته مهمتر میدانند، اگرچه هنوز از آن برای نتیجهگیری استفاده میکنند.
شبکههای متخاصم مولد تکاملی (E-GAN)، که در طول زمان تکامل مییابد و مسیرهای کمی تغییر یافته را بر اساس تجربیات قبلی با هر تصمیم جدید کشف میکند. این مدل دائماً به دنبال مسیری بهتر است و از شبیهسازیها و آمار یا شانس برای پیشبینی نتایج در طول چرخه جهش تکاملی خود استفاده میکند.
نظریه ذهن
نظریه ذهن دقیقاً همین است – نظری. ما هنوز به توانایی های فنی و علمی لازم برای رسیدن به این سطح هوش مصنوعی دست نیافته ایم.
این مفهوم بر اساس پیشفرض روانشناختی درک این موضوع است که موجودات زنده دیگر افکار و احساساتی دارند که بر رفتار شخص تأثیر میگذارند. از نظر ماشینهای هوش مصنوعی، این بدان معناست که هوش مصنوعی میتواند احساسات انسانها، حیوانات و سایر ماشینها را درک کند و از طریق خود تأملی و تصمیمگیری تصمیم بگیرد و سپس از این اطلاعات برای تصمیمگیری خود استفاده کند. اساساً، ماشینها باید بتوانند مفهوم «ذهن»، نوسانات احساسات در تصمیمگیری و مجموعهای از مفاهیم روانشناختی دیگر را در زمان واقعی درک و پردازش کنند و یک رابطه دو طرفه بین افراد و هوش مصنوعی ایجاد کنند.
خودآگاهی
زمانی که تئوری ذهن در هوش مصنوعی ایجاد شود، در آینده نزدیک، گام نهایی برای خودآگاهی هوش مصنوعی خواهد بود. این نوع هوش مصنوعی دارای آگاهی در سطح انسان است و وجود خود در جهان و همچنین حضور و وضعیت عاطفی دیگران را درک می کند. این می تواند بفهمد که دیگران ممکن است به چه چیزهایی نیاز داشته باشند نه فقط بر اساس آنچه با آنها ارتباط برقرار می کنند، بلکه بر اساس نحوه ارتباط آنها.
خودآگاهی در هوش مصنوعی هم به محققان انسانی متکی است که مقدمات آگاهی را درک کنند و سپس یاد بگیرند که چگونه آن را تکرار کنند تا بتوان آن را در ماشین ها ساخت.
هوش مصنوعی چگونه استفاده می شود؟
جرمی آچین، مدیر عامل DataRobot در حالی که در سال 2017 در نمایشگاه هوش مصنوعی ژاپن سخنرانی می کرد، سخنرانی خود را با ارائه تعریف زیر از نحوه استفاده از هوش مصنوعی امروزی آغاز کرد:
“هوش مصنوعی یک سیستم کامپیوتری است که قادر به انجام وظایفی است که معمولاً به هوش انسانی نیاز دارند… بسیاری از این سیستم های هوش مصنوعی با یادگیری ماشینی، برخی از آنها با یادگیری عمیق و برخی از آنها با چیزهای بسیار خسته کننده مانند قوانین قدرت می گیرند. ”
هوش مصنوعی به طور کلی در دو دسته کلی قرار می گیرد:
هوش مصنوعی باریک: گاهی اوقات به عنوان “هوش مصنوعی ضعیف” شناخته می شود، این نوع هوش مصنوعی در یک زمینه محدود عمل می کند و شبیه سازی هوش انسانی است. هوش مصنوعی باریک اغلب بر روی انجام یک کار واحد متمرکز است و در حالی که این ماشینها ممکن است هوشمند به نظر برسند، حتی از ابتداییترین هوش انسانی تحت محدودیتها و محدودیتهای بسیار بیشتری کار میکنند.
هوش عمومی مصنوعی (AGI): AGI که گاهی به آن “هوش مصنوعی قوی” نیز گفته می شود، نوعی هوش مصنوعی است که در فیلم ها می بینیم، مانند روبات های Westworld یا Data from Star Trek: The Next Generation. AGI یک ماشین با هوش عمومی است و مانند یک انسان، می تواند از این هوش برای حل هر مشکلی استفاده کند.
هوش مصنوعی باریک
هوش مصنوعی باریک در اطراف ما وجود دارد و به راحتی موفق ترین تحقق هوش مصنوعی تا به امروز است. با توجه به “آماده سازی برای آینده هوش مصنوعی”، با تمرکز بر انجام وظایف خاص، Narrow AI پیشرفت های متعددی را در دهه گذشته تجربه کرده است که “مزایای اجتماعی قابل توجهی داشته و به سرزندگی اقتصادی کشور کمک کرده است.” گزارش سال 2016 که توسط دولت اوباما منتشر شد.
چند نمونه از Narrow AI عبارتند از:
جستجوی گوگل ( سئو سایت )
نرم افزار تشخیص تصویر
سیری، الکسا و دستیاران شخصی دیگر
ماشین های خودران
واتسون IBM
سفارش طراحی سایت
دیدگاهتان را بنویسید